Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Deep neural networks are susceptible to generating overconfident yet erroneous predictions when presented with data beyond known concepts. This challenge underscores the importance of detecting out-of-distribution (OOD) samples in the open world. In this work, we propose a novel feature-space OOD detection score based on class-specific and class-agnostic information. Specifically, the approach utilizes Whitened Linear Discriminant Analysis to project features into two subspaces the discriminative and residual subspaces - for which the in-distribution (ID) classes are maximally separated and closely clustered, respectively. The OOD score is then determined by combining the deviation from the input data to the ID pattern in both subspaces. The efficacy of our method, named WDiscOOD, is verified on the large-scale ImageNet-1k benchmark, with six OOD datasets that cover a variety of distribution shifts. WDiscOOD demonstrates superior performance on deep classifiers with diverse backbone architectures, including CNN and vision transformer. Furthermore, we also show that WDiscOOD more effectively detects novel concepts in representation spaces trained with contrastive objectives, including supervised contrastive loss and multi-modality contrastive loss.more » « less
- 
            We propose an improved keypoint approach for 6-DoF grasp pose synthesis from RGB-D input. Keypoint-based grasp detection from image input demonstrated promising results in a previous study, where the visual information provided by color imagery compensates for noisy or imprecise depth measurements. However, it relies heavily on accurate keypoint prediction in image space. We devise a new grasp generation network that reduces the dependency on precise keypoint estimation. Given an RGB-D input, the network estimates both the grasp pose and the camera-grasp length scale. Re-design of the keypoint output space mitigates the impact of keypoint prediction noise on Perspective-n-Point (PnP) algorithm solutions. Experiments show that the proposed method outperforms the baseline by a large margin, validating its design. Though trained only on simple synthetic objects, our method demonstrates sim-to-real capacity through competitive results in real-world robot experiments.more » « less
- 
            The success of 6-DoF grasp learning with point cloud input is tempered by the computational costs resulting from their unordered nature and pre-processing needs for reducing the point cloud to a manageable size. These properties lead to failure on small objects with low point cloud cardinality. Instead of point clouds, this manuscript explores grasp generation directly from the RGB-D image input. The approach, called Keypoint-GraspNet (KGN), operates in perception space by detecting projected gripper keypoints in the image, then recovering their SE(3) poses with a PnP algorithm. Training of the network involves a synthetic dataset derived from primitive shape objects with known continuous grasp families. Trained with only single-object synthetic data, Keypoint-GraspNet achieves superior result on our single-object dataset, comparable performance with state-of-art baselines on a multi-object test set, and outperforms the most competitive baseline on small objects. Keypoint-GraspNet is more than 3x faster than tested point cloud methods. Robot experiments show high success rate, demonstrating KGN's practical potential.more » « less
- 
            This paper presents a semi-supervised framework for multi-level description learning aiming for robust and accurate camera relocalization across large perception variations. Our proposed network, namely DLSSNet, simultaneously learns weakly-supervised semantic segmentation and local feature description in the hierarchy. Therefore, the augmented descriptors, trained in an end-to-end manner, provide a more stable high-level representation for local feature dis-ambiguity. To facilitate end-to-end semantic description learning, the descriptor segmentation module is proposed to jointly learn semantic descriptors and cluster centers using standard semantic segmentation loss. We show that our model can be easily fine-tuned for domain-specific usage without any further semantic annotations, instead, requiring only 2D-2D pixel correspondences. The learned descriptors, trained with our proposed pipeline, can boost the cross-season localization performance against other state-of-the-arts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
